
Seascape: A Due-Diligence Framework For Algorithm
Acquisition

Christopher Pittsa and Forest Danford and Emily Moore and William Marchetto and Henry
Qiu and Leon Ross and Todd Pitts

a Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, New Mexico, United
States, cwpitts@sandia.gov;

ABSTRACT
Any program tasked with the evaluation and acquisition of algorithms for use in deployed scenarios must have an
impartial, repeatable, and auditable means of benchmarking both candidate and fielded algorithms. Success in
this endeavor requires a body of representative sensor data, data labels indicating the proper algorithmic response
to the data as adjudicated by subject matter experts, a means of executing algorithms under review against the
data, and the ability to automatically score and report algorithm performance. Each of these capabilities should
be constructed in support of program and mission goals. By curating and maintaining data, labels, tests, and
scoring methodology, a program can understand and continually improve the relationship between benchmarked
and fielded performance of acquired algorithms. A system supporting these program needs, deployed in an
environment with sufficient computational power and necessary security controls is a powerful tool for ensuring
due diligence in evaluation and acquisition of mission critical algorithms. This paper describes the Seascape
system and its place in such a process.

Keywords: Machine learning, algorithm assurance, algorithm acquisition, artificial intelligence, algorithm as-
sessment

1. INTRODUCTION
All programs that acquire algorithms have a need to accumulate, curate, label, preserve, and disseminate valu-
able data for algorithm development. Additionally, there is a strong need to reliably, impartially, and repeatably
benchmark algorithms under consideration, comparing them to competitors as well as earlier versions of them-
selves.

The Seascape system uses off-the-shelf open-source software to create a system for the management of test and
evaluation data, automated benchmarking of algorithms, and standardized reports across all algorithms under
evaluation. To manage data, the Nexus artifact storage server was used to provide easily indexable storage
for both evaluation data and final reports, with Apache Solr and Banana being used to provide more in-depth
analytics and indexing capability. GitLab provides version control and integrated Continuous Integration (CI)
capability supporting automated evaluation and result generation. Automated schedules configured in GitLab CI
are used to trigger evaluation and report generation stages, with Python shim code determining which algorithms
to assess.

Seascape is designed to use abstract interfaces to algorithms, driven by shell scripts and packaged dependencies
in algorithm repositories. Both bare-metal and containerized (via Docker, Podman, or other Open Container
Initiative (OCI)-compliant container image) versions of algorithms are supported. A containerized algorithm
also offers the ability to run an algorithm under an environment that replicates actual deployment environments,
enabling a “test-what-you-fly” methodology that provides an additional layer of algorithm assurance.

In this paper we first outline a set of principles for due diligence in algorithm acquisition for the purpose
of discussing the Seascape system. We then proceed to discussing the design of Seascape and show how the
application of the principles produces a system that directly addresses the needs of an algorithm acquisitions
process at the program level. We conclude with an analysis of the deployment of Seascape at Sandia in support of
sponsor-directed algorithm acquisition, and discuss how Seascape provides a robust, streamlined, and transparent
evaluation framework.



2. BACKGROUND AND RELATED WORK
The term technical debt was coined by Ward Cunningham to refer to the trade-off between speed and quality.1
The precise meaning of the term has fluctuated, and with the rise of formal software program management has
come to mean something akin to “risk arising from code”. Beyond risk stemming from code, risk to the success of
a program can come from factors external to the actual development of an algorithm. Sculley et al.2 discussed the
sources of risk that arise in machine learning systems that have multiple component parts, and these conclusions
are generally true for any system involving multiple software components.

For a program that is in the business of funding and acquiring algorithms, the technical debt is small to
nonexistent, as the development work is done by third parties, either directly funded by a sponsor or opportunis-
tically presenting their algorithms for acquisition. The system-level debt, however, can be enormous, as a flawed
algorithms acquisitions process can lead to the deployment of algorithms that are not effective in real-world
usage, are not the most effective algorithm for the problem the sponsor wishes to solve, or are not usable by
non-experts. The goal of an algorithm acquisitions program must therefore be to manage the risk of acquiring
an ineffective or incomplete algorithm, and ensuring that any acquisition decisions will deliver tested, validated,
and trustworthy algorithm solutions, regardless of the source.

It is appropriate to consider the relationship of the Seascape algorithm evaluation framework to other en-
vironments focusing on managing development. Many of these other frameworks such as Domino Data Lab,
Anaconda Enterprise Edition, and MLflow, have arisen recently in the machine learning (ML)/Artificial Intel-
ligence (AI) communities in support of Machine Learning Operations (MLOps). They work with ML and data
science frameworks such as Jupyter, RStudio, SAS, MATLAB, Spark, etc. to assist developers in managing model
and algorithm development. In contrast to these frameworks Seascape helps a program manage the validation
and verification process regardless of the frameworks or tools used to develop the algorithms, or in the specific
case of ML, the models. It supports due diligence in the acquisition process by managing data stores, test defi-
nitions, released algorithm versions, and benchmark results. It can also provide the ability to manage pipelines
ensuring requirements compliance.

3. PRINCIPLES OF DUE DILIGENCE IN ALGORITHM ACQUISITION
The dynamic nature of research and development work, particularly in algorithm development, prevents a uni-
versal definition of what constitutes “due diligence” in algorithm acquisition. For the purposes of this paper, we
will be using the following principles:

1. Automation

2. Data management

3. Reproducibility

4. Analysis

5. Scalability

We note at the outset that these principles are not independent, but rather support one another. For example,
reproducibility is not really possible without automation and data management. Also, we assert that a good
tool for program level management of the acquisition process should be agnostic to the tool sets chosen by the
algorithm developers. This encourages use of the right tool for each development process instead of shoehorning
teams into a preselected framework.

3.1 Automation
All algorithm evaluation processes should be automated. Automated evaluation ensures that each algorithm is
properly tested in a repeatable fashion. It also significantly reduces the cost of testing multiple times. Testing
should happen each time an algorithm is changed. Manual processes are expensive and can be tedious for large
tests. They also lead to significant program risk of error, omission, lack of repeatability, and extended time lines.



3.2 Data management
In an objective evaluation framework, data must be available in a format that is easy to index and search. The
format must have a simple interface, and be straightforward to parse in a wide array of programming languages.
Using a Python pickle format, for example, would be a poor choice, as it would force all algorithms to be
implemented in Python (or at least include Python as a dependency). Leaving the choice of implementation
language up to development teams widens the field of potential contributors, and allows the framework to take
an agnostic high-level approach to how it executes the algorithm against test data.

In addition to the storage and access requirements, the data should be curated, labeled, and verified post-
ingest by subject matter experts. Curation refers to the process of ensuring the data are stored in a consistent,
complete, accurate, and machine readable, format. For example, longitude could be specified as a value in degrees
in the range [0, 360), or in the range [−180, 180). It could also be specified as a value between 180W and 180E.
However it is done, it should be done consistently. Curation also includes the correction of errors in the data
(for example image coordinates given with longitude in the range [0, 360) and labels given with coordinates in
the range [−180, 180) or image labels in row-column format when column-row is intended. Labeling refers to the
process of indicating the proper response for an algorithm when shown the data. For time series signals it may
be selection of a segment of the signature or a high level label indicating it is a signature of a particular class. For
imagery, it may be a region of pixels containing objects to be detected and classified together with the class of
the object. How labels are applied depends in large measure on the type of data and intended application. The
datasets should accurately represent both in- and out-of-class targets. Such a practice also helps to mitigate the
effects of an adversarial attempt to poison the evaluation dataset by introducing false training samples. Curation
and labeling is generally time consuming and expensive. However, if properly done, it represents Non-recurring
engineering (NRE) capturing the evaluations of subject matter experts that can be used by all developers in
perpetuity.

3.3 Reproducibility
Any sort of evaluation should be reproducible; that is, given the same algorithm implementation and inputs,
the same outputs should be produced, and the same assessment generated. This ensures that assessments are
reliable and consistent across evaluation runs. It is also one of the primary goals of test automation. Crucial to
the notion of reproducibility is the idea of smart bookkeeping that enables the tracking of algorithm version and
their association with correlated benchmark results. The association of a released version of an algorithm with
its corresponding performance benchmark should be inherent in the testing process.

3.4 Analysis
Any algorithm evaluation process must include a summary analysis that compiles results and expresses them
using a set of metrics that are meaningful to program experts skilled in evaluating deployed performance. These
metrics should be determined and controlled by the acquisition program, not the vendor. Specific deployment
environments may lead to favoring a low probability of false alarm, or a particular scenario may necessitate
identifying which specific classes of false positive are especially egregious. These analyses will be highly specific
to the program acquiring the algorithms, and are not necessarily implemented in the algorithm itself. Thus,
a viable framework must provide capability to generate standardized assessments that can be configured for
different program needs.

3.5 Scalability
As the number of algorithms (and their versions) under evaluation grows, the demand on infrastructure corre-
spondingly increases. So, any algorithm evaluation framework should be able to efficiently scale with the number
of algorithms currently under evaluation. This is especially true when algorithms that require a significant
amount of time to execute are being evaluated; having one algorithm consume all of the available computing
power would be a significant risk to the success of an acquisitions program. Scalability is also critical in ensuring
adequate testing can be accomplished for any single algorithm. Performance testing sufficiently thorough to
ensure meaningful correlation with deployed performance is often computationally burdensome even for a single



algorithm. Use of compute clusters and parallel processing in the evaluation framework can allow faster-than-
real-time benchmarking and significantly improve evaluation quality while maintaining a practical time line.
Estimating false positive rates over long periods of time can only realistically be done with parallel processing.
This will almost always occur when computing false positive rate while attempting to detect low probability
events.

4. SEASCAPE DESIGN
Seascape is designed around a software stack composed primarily of broadly used open source components. It
is implemented as a lightweight overlay capable of distributing tests to multiple computers, gathering results,
producing reports, and handling the logistics and accounting of correctly associating them with algorithm release
versions. It is agnostic towards development and language frameworks placing no related requirements on the
development teams. Support for containerization technologies (such as Docker) reduces the time required to insert
an algorithm into the testing harness. Containerization allows the development team to effectively integrate at
their own site in their own environment and deliver the final container to the Seascape instance without the need
for burdensome coordination or instruction from the procurement team. If desired, containerization also allows
the test framework to mimic deployed conditions.

These are discussed in more detail in the sections below. Section 4.1 discusses how an algorithm release version
is created and, together with a Git release tag, used to control testing. The Seascape data store is simply the
corpus of data used for validation and verification by the program. Its structure is reviewed in Section 4.2. The
use of multiple computers to accelerate testing as well as the collation of test results is outlined in Section 4.3.
Finally, Section 4.4 discusses the generation and customization of evaluation metrics and reports. A general
overview of the Seascape system is given in Figure 1.

Development Team

Development Team

Test Pipeline

Report Pipeline
BP

Version Control
alg_0/#10a9

/#a0b8
/#6e84

alg_1/#809b

/#94d1

Data/Labels

Tests

Results
alg_0/#10a9

/#a0b8
/#6e84

alg_1/#809b

/#94d1

Reports
alg_0/#10a9

/#a0b8
/#6e84

alg_1/#809b

/#94d1

Figure 1: An overview of Seascape. Development teams use labeled data from the data store to develop algo-
rithms. They then submit release versions by checking them in to a version controlled repository, implemented
in Seascape using GitLab. A unique number (hash) is automatically associated with each checked in algorithm.
Seascape then uses additional data and labels to drive test pipelines and generate results, storing them under
the hash in the artifact repository. These results are then used by the report generation pipelines to create and
store performance evaluations.



4.1 Version Control
Seascape uses the Git version control system to manage algorithms under test. A team that submits an algorithm
to the program checks various artifacts into a Git repository, including the algorithm, any trained models or
parameters that are used by the algorithm, and a shell script used to load input data, execute the algorithm, and
output results. This is a key part of the design of Seascape, as Git commit hashes provide a means to associate
algorithm versions with results and assessments. A commit hash is a Secure Hash Algorithm (SHA)-1 hash of
the contents of the repository (that is, all files being tracked by Git) at the moment the snapshot was taken.3
Having an immutable reference to the state of a repository makes it possible to directly link a particular version
of an algorithm with the results produced by the algorithm, and the final assessment of performance based on
test results. This supports reproducibility of results (principle 3), because it is easy to checkout a particular
version of the algorithm and run the assessment again.

To determine which commits should be treated as new versions to test, Git tags are used to mark particular
commits. A Git tag is a named reference to a specific commit, used primarily to mark commits with particular
significance (version releases, new features, etc.). Rather than treat each new commit as a new version, Seascape’s
evaluation and report generation stages search for tagged commits in the repository. Tags names matching a
specified format are treated as new versions of an algorithm. This avoids the generation of results and reports
for commits where stylistic changes, documentation updates, or other non-algorithm changes are added to the
repository.

4.2 Data Store
Three types of data are stored in Seascape: datasets (with labels), test instance results (detailed in Section 4.3),
and reports (detailed in Section 4.4).

Datasets are stored in a directory tree format similar to what is often found on disk. Each data instance
is stored in a separate directory under the top-level dataset directory, along with a JavaScript Object Notation
(JSON) label file and, if necessary, a JSON metadata file. An example of this structure using a fictional
“penguins” dataset with Tagged Image File Format (TIFF) images is shown in Figure 2.

penguins
instance-1

instance-1.tiff
instance-1.json

instance-2
instance-2.tiff
instance-2.json

Figure 2: Each instance is stored in a separate directory, along with all related information. This example is for
explanatory purposes only, Seascape can be used with data of any type (time series, image, etc.).

The JSON file contains any information necessary for the assessment stage to determine whether or not the
algorithm made the correct decision. The label file contents may be as shown in Figure 3.

Having expert-adjudicated data in a clear format that is accessible to all members of the program (and access
that can be extended to teams submitting algorithms) ensures that research will be done on an agreed-upon
dataset, and that results will be computed and reports generated for the same dataset every time (principle 2).

4.3 Job Dispatch and Result Collation
Seascape uses GitLab CI to distribute batches of test data or instances to machines configured to accept jobs. An
instance is a single training or testing unit. For example, it may be a single radio frequency time series in which
we wish to detect a target signature or an image in which we wish to locate and classify objects. Because each
instance is processed separately, the dispatch problem is embarrassingly parallelizable and eminently scalable
(addressing point 5 in our definition of due diligence in section 3), and the speedup is directly proportional to
the number of machines on hand and the batch size.



[
{

"class": "adelie",
"imageID": "instance-1.tiff",
"polygonPxl": [

[10, 10],
[11, 11],
[10, 12],
[9, 11],
[10, 10]

]
},

{
"class": "emperor",
"imageID": "instance-1.tiff",
"polygonPxl": [

[100, 110],
[110, 110],
[110, 100],
[100, 100],
[100, 110]

]
},

]
Figure 3: Keys for the class label, the source image, and the bounding box of the target

Algorithm responses are automatically adjudicated by the system using the expert provided labels and a
program defined scoring metric (expressible in Seascape though a plugin architecture). As jobs are completed,
results for each instance in the batch are stored under a key built from the Git commit hash of the algorithm
and the test instance ID. Such a composite key structure imparts an idempotent characteristic to Seascape; a
particular test can be re-run and skip the computation of results, because an algorithm and model that have
not changed would produce the same result on the same input data instance. Additionally, a new test composed
of both data instances with results and instances not yet used in a test only needs to process results for the
instances not yet seen, because the results are tied to the algorithm commit and the instance ID, reducing the
runtime for new tests. Given a new test N and an existing test P , such that N ⊂ P and all instances in P
have been processed, no new jobs need to be run at all, and Seascape will move directly to the report generation
stage. Naturally, a program user does not need to manage this process at all. It is inherently part of the way
Seascape works.

The dispatch of jobs can be manually triggered by a member of the program team, but the primary method
for starting an evaluation job is a schedule, configurable using the built-in GitLab scheduling method. This needs
to be done only once per algorithm and consists of entering a periodic time to launch any necessary jobs for
evaluating the new algorithm. Algorithm changes will be automatically detected and adjudicated after check in at
the next scheduled test time. This permits regular automated assessments of all changes in algorithms (principle
1), and relieves groups submitting algorithms of the need to manually generate assessments for sponsors.

4.4 Report Generation
Along with evaluation jobs, Seascape also schedules jobs for generating reports. A report generation job examines
all tagged algorithm versions, and checks the data store for each test definition. When an algorithm version has
results for all images in a test definition, a new report is generated from the results. As with results and test
definitions, final reports are stored under a key composed of a dataset name and algorithm commit hash.

Report generation is designed to use a plugin architecture, enabling sponsors or programs to design customized



assessments of algorithm performance, addressing due-diligence principle 4. Reports can be generated as HTML
documents, LATEX Beamer slides, or any format that can be generated programmatically from a Python script.

5. EMPIRICAL RESULTS
Here we discuss a specific example involving two algorithms: RetinaNet and DetectNet. We might consider these
algorithms to be the product of the two development teams shown in Figure 1 by labeling them alg_0 and alg_1
respectively. Each algorithm has been trained for the identification of aircraft in overhead imagery. In order
to test the performance of each, we are using a data set we’ll call RAVE_planes. These data correspond to the
Data/Labels block (dark green) in the upper right hand corner of Figure 1. The test data set consists of 1390
images. Each image has labels for a number of object types. Here we’ll concern ourselves with three of these
labels: PassengerCargoPlane, SmallAircraft, and FighterJet. Over the 1390 images in the test data set we find,
respectively, 2029, 2228, and 735 examples of each class (see Table 1).

Algorithm name (hash)
Test Date

retinanet (6e84)
2022-03-25

detectnet (94d1)
2022-03-28

FighterJet (735)
True positive
False negative
False positive
Precision
Recall
F1

368
367
46
0.50
0.89
0.64

525
210
54
0.71
0.91
0.80

PassengerCargoPlane (2029)
True positive
False negative
False positive
Precision
Recall
F1

1542
488
150
0.76
0.91
0.83

1873
156
1049
0.92
0.64
0.76

SmallAircraft (2228)
True positive
False negative
False positive
Precision
Recall
F1

1524
704
149
0.68
0.91
0.78

706
1527
101
0.32
0.87
0.46

Table 1: Seascape-generated evaluation of two algorithms against the same dataset. Three targets are considered.
The number of labels for each class (support) in the test data set is given after the label in parentheses. Seascape
allows custom report generation via a Python language module, tailored to the needs of a program. In this case,
we use the a brief set of six statistics shown in the table to compare the algorithms.

The associated GitLab instantiation (represented by the Version Control block (light gray) in the center
of Figure 1) automatically computed a unique hash for the version of each algorithm under test. The first four
digits of each hash are shown in the Table 1 immediately following the algorithm release name. In the web-based
report the full hash is given. Using GitLab we may apply a tag to each hash. We use this built-in facility
of Git (accessible via the GitLab web interface) to indicate which algorithm versions should be run against a
test. Affixing a tag to an algorithm hash ending in _full or _baseline indicates that Seascape should generate
results and reports for baseline (simple) and full test data sets respectively. In our example, we use a full test
for each algorithm. After tagging, Seascape automatically ran each algorithm on all 1390 images using GitLab
runner over a small cluster of machines. This is shown in Figure 1 as the red component labeled Test Pipeline.
The results for each image were stored under the corresponding algorithm and hash. After completion of the



(a) (b)
Figure 4: (a) Confusion matrix for the RetinaNet algorithm. (b) Confusion matrix for the DetectNet algorithm.
The sum of each column gives the support (total number) of test elements in each category. For this data set
we have 735, 2029, and 2228 respectively for labels FighterJets, PassengerCargoPlanes, and SmallAircraft.

entire test set a report was automatically generated and stored under the algorithm name and hash (see the blue
component labeled Report Pipeline in Figure 1). The results are summarized in Table 1 and Figure 4.

Table 1 compares the two algorithms based on six simple statistics: the numbers of true positives, false nega-
tives, false positives, precision∗, recall†, and F1 score‡. It is clear from the data that DetectNet performs better
under the F1 score than RetinaNet on the FighterJet class, while the converse is true for the PassengerCargoPlane
and SmallAircraft labels.

Figure 4 shows the confusion matrices for each algorithm from the corresponding Seascape reports. The
columns and rows of a confusion matrix correspond, respectively, to the actual and predicted class labels. The
final row of the matrix gives false negatives (not detected at all). The final column shows false positives (erroneous
detections). The final square is always zero. The diagonal of each confusion matrix shows the number of objects
correctly detected and classified. The remainder of the entries show mislabeled detections.

Whenever a Git tag is updated to point to a newer version of either algorithm, a new corresponding set of
results and report are automatically generated.

6. SUMMARY
This report describes the Seascape system and its ability to provide support for due diligence in program level
algorithm development, acquisition, and deployment. Seascape is a modular composition of a small number of
open-source components (GitLab, GitLab Runner, Nexus, Solr, Banana), together with some orchestration code
written in Python. Any language that can run in CI is supported for algorithms. All data types (time series,
imagery, etc.) are supported. The primary purpose of the system is to gather, label, and curate program relevant
data sets, provide the ability to explore the data, define representative bodies of data to serve as tests, and to
automate the running of tests, storage of intermediate results, and generation of reports on a per algorithm per
release basis.

∗Precision is defined as the ratio of true positives to the sum of true positives and false positives (total number
algorithm generated labels for the given class).

†Recall is defined as the ratio of true positives to the sum of true positives and false negatives (the total number of
in-class labels in the test data set).

‡F1 is defined as the harmonic mean of precision and recall.



From a technical burden standpoint, development teams only have to know how to check code in for evaluation
in CI or use a Docker repository (very common knowledge). Currently, on the program side the set up of GitLab
schedules and use of JSON to define tests is required. All subsequent processing is automatic after set up. It is
also possible to define a program specific test adjudication metric and report format via Python.

Among the advantages of using such a system as part of ensuring diligence in acquisition are: impartial,
repeatable, explainable adjudication, significant reduction in integration cost/effort through the use of container-
ization (Apptainer, Podman, Docker), more frequent assessment, up-to-date statistics, reduction of benchmark
errors and repeatability via automation. Integrated use of version control also enables understanding of algo-
rithms deployed in the field. The application of open-source technology reduces cost and increases the number of
individuals who are likely to have preexisting experience with system components already. Finally, it facilitates
the collection, organization, curation, labeling, and understanding of the data, which is central to establishing a
benchmark expectation for field performance.

Acknowledgements
This work was conducted with funding from the Navy RSCD (Remote Sensing Capability Development) program
operating in PMW-120 (Battlespace Awareness and Information Operations Program Office) under PEO C4I
(Program Executive Office Command, Control, Communications, Computers, Intelligence and Space Systems),
contract number N0003922IP00013. Some Seascape capabilities were developed with funding from the Air Force
Air Combat Command under contract number F3QCAZ0161G101. Approved for unclassified unlimited release
(UUR) by Sandia National Laboratories, SAND Number SAND2022-10391 C.

REFERENCES
1. W. Cunningham, “The WyCash Portfolio Management System,” SIGPLAN OOPS Mess. 4, p. 2930, dec

1992.
2. D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, M. Young, J.-F. Crespo,

and D. Dennison, “Hidden Technical Debt in Machine Learning Systems,” in Proceedings of the 28th Interna-
tional Conference on Neural Information Processing Systems - Volume 2, NIPS’15, p. 25032511, MIT Press,
(Cambridge, MA, USA), 2015.

3. S. Chacon and B. Straub, Pro Git/1.3 Getting Started - What is Git? Apress, 2 ed., 2014.


