
Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Programming in Bash for Fun and Profit

Christopher W. Pitts

July 14, 2017

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Disclaimer

The views in this presentation are entirely my own, and in no
way represent any sort of official or unofficial endorsement by
Sandia National Laboratories or NTESS.

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Follow Along?

https://github.com/cwpitts/bash-presentation

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

About Me

From Albuquerque, New Mexico

Raging Star Wars fan

Still bitter about Disney and the Expanded Universe

Studied computer science at Brigham Young University

Software Systems Engineer at Sandia National
Laboratories

Ik spreek Hollands (ook Vlaams)!

Happily married

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Overview

1 Intro

2 Common Pitfalls

3 Features

4 Useful Applications Of Bash

5 Conclusion

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Why Are You Here?

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Why Are You Here?

Use it at work

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Why Are You Here?

Use it at work

Have to maintain someone else’s Bash code

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Why Are You Here?

Use it at work

Have to maintain someone else’s Bash code

I read the Bash script that installs Salt, and it gave me
nightmares

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

What Is Bash?

What Is Bash?

A shell

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

What Is Bash?

What Is Bash?

A shell

A scripting language

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

What Is Bash?

What Is Bash?

A shell

A scripting language

The verb that describes what your head does to the
desk after the first ten minutes of trying to learn the
scripting language

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

What Is Bash?

What Is Bash?
Bourne Again SHell

sh-compatible shell
incorporates useful features from Korn and C shells
default shell in GNU/Linux

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

What Is Bash?

No, Really, What is Bash?
Bash is a programming language

Data types?

Nope!
Bash has untyped variables

Containers?

Sequential arrays
Associative arrays (a.k.a. maps, dictionaries)

Flow control?

Conditional statements
Loops

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Bash Is Dangerous!

Bash is dangerous, if used unwisely.

Be careful out there!

For example, don’t do this:

curl | sudo bash

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Looping Over ’ls’

Don’t do this!

#!/bin/bash

#

for file in $(ls)

do

printf "%s\n" "${file}"

cat "${file}"

printf "\n"

done

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Looping Over ’ls’

Looping over the output of ls is considered fragile and
dangerous

Fragile: Special characters (newlines, spaces, etc.) can
break the loop vey easily

Dangerous: Special characters can cause unintended
consequences

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Looping Over ’ls’

Try this instead:

#!/bin/bash

for file in *.txt

do

printf "%s\n" "${file}"

cat "${file}"

printf "\n"

done

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Looping Over ’ls’

Globbing is safer

Regex matching allows for finer control

Special characters won’t break the loop

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Word Splitting

What will this code do?

#!/bin/bash

var="This is a sentence."

printf $var

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Word Splitting

Let’s talk about IFS.

IFS is the “Internal Field Separator”, the delimiter that Bash
uses to separate words, array entries, and arguments.

You’ll notice that only the first word of the sentence was
printed. This is because $var expands to the full sentence, so
you end up with something equivalent to this:

$ printf This is a sentence.

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Word Splitting

If we look at the manual page for printf:

PRINTF(1) User Commands PRINTF(1)

NAME
printf - format and print data

SYNOPSIS
printf FORMAT [ARGUMENT]...

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Word Splitting

The moral of the story: always quote your variables (and use
printf correctly):

#!/bin/bash

var="This is a sentence."

printf "%s" "${var}"

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Double Or Single Quotes?

#!/bin/bash

var="foobar"

This will not do what we want

printf '%s\n' '${var}'

This will

printf "%s\n" "${var}"

So will this, as it happens

printf '%s\n' "${var}"

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Double Or Single Quotes?

Single quotes

Literal strings

No parameter expansion (the ’$varname’)

Double quotes

Interpolated strings

Parameter expansion

Interpreted characters:

$ (parameter expansion and subshell)
` (old subshell syntax)
\ (escape sequences)

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Variables

#!/bin/bash

Correct

var=1

Incorrect (whitespace not allowed)

var = 1

Access values with $

var2=${var1}

printf "%d\n" "${var2}"

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Math

#!/bin/bash

x=10

To do math, use ((<math>))

((x--))

((x=x-1))

Or <var>=$((<math>))

x=$((x-1))

Or let

let x-- # That's a double dash there

printf "%d\n" "${x}"

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Dynamic Typing

#!/bin/bash

x is a string

x="foobar"

printf "%s\n" "${x}"

x is now a number!

x=7

printf "%d\n" "${x}"

Or a string?

printf "%s\n" "${x}"

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Undeclared Variables

#!/bin/bash

x="foobar"

We already know what this does

printf "|%s|\n" "${x}"

But what happens here?

printf "|%s|\n" "${y}"

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Input/Output

Two main kinds of input in Bash

Command-line arguments

Command output

Two main types of output in Bash

Return code

stdout

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Command-line arguments

#!/bin/bash

Arguments are passed in in an array

Arbitrary access with ${<index>}

printf "The first argument: %s\n" "${1}"

printf "The second argument: %s\n" "${2}"

printf "Did we get a third? %s\n" "${3}"

Get all of the values in an array with ${@}

printf "%s\n" "${@}"

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Command output

#!/bin/bash

Use $(<command>) to capture command output

Note the distinct lack of spaces

c=$(ls)

printf "%s\n" "${c}"

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Return code

#!/bin/bash

declare -a arr=("manjaro" "arch" "ubuntu" "fedora")

filename="example.txt"

for i in ${arr[@]}

do

printf "%s\n" "${i}" >> ${filename}

done

if grep -q "${1}" ${filename}

then

printf "Found %s!\n" "${1}"

fi

rm ${filename}

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

stdout

#!/bin/bash

function even_or_odd()

{

if (($((${1} % 2)) == 0))

then

printf "Even!\n"

else

printf "Odd!\n"

fi

}

res=$(even_or_odd ${1})

printf "%s\n" "${res}"

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Flow control

Conditionals

Loops

For loops
While loops
Until loops

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Conditionals

#!/bin/bash

target=5

Getting input from command line arguments

num=${1}

Comparisons are [<statement>]

if [${num} -gt ${target}]

then

printf "greater!\n"

elif [${num} -lt ${target}]

then

printf "less!\n"

else

printf "equal!\n"

fi # Note we end with 'fi'

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

For loops

Pythonic for loops:

#!/bin/bash

Python-style for x in y loop

$(seq 10) expands to 1 2 3 4 5 6 7 8 9 10

for i in $(seq 10)

do

printf "%d\n" "${i}"

done

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

For Loops

C/C++-style for loops:

#!/bin/bash

C/C++-style for loop

for ((i=0; i < 10; i++))

do

printf "%d\n" "${i}"

done

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

While loops

#!/bin/bash

k=1

while ((k < 10))

do

printf "%d\n" "${k}"

((k=k+1)) # Note the ((math)) setup here

Could also do let k++

done

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Until loops

#!/bin/bash

k=0

until ((k == 10))

do

printf "%d\n" "${k}"

((k++))

done

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Functions

Functions in Bash are pretty straightforward.

#!/bin/bash

Could also do: function f

Parens make it look nice

function f()

{

printf "function f got: %s\n" "${1}"

}

Call like it's on the command line

<function> <arguments>

f "${1}"

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Can You Do Anything Useful In Bash?

Yes!

Caveat: Bash is great for gluing things together, but you
wouldn’t want to write a webserver in it.

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Mass Renaming

You could write a mass-rename utility

#!/bin/bash

oldExt="${1}"

newExt="${2}"

Use this regex globbing instead of $(ls)

for file in *.${oldExt}

do

Get base filename (strip extension)

f=$(printf "%s" "${file}" | cut -d '.' -f 1)

Move to new file and change extension

mv "${file}" "${f}.${newExt}"

done

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Slackbot

How about a Slackbot?

#!/bin/bash

msg="${1}"

slackteam="${2}"

curl -X POST --data-urlencode\

"payload={\"text\":\"${msg}\"}"\

"${slackteam}"

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Customize Your .bashrc

Supercharge your command line by tweaking your .bashrc file

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Customize Your .bashrc

Supercharge your command line by tweaking your .bashrc file

Define custom functions to use on the command line

Define often-used flags for a command as an alias

Make your prompt way more interesting

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Customize Your .bashrc

Custom functions

Changing behavior of cd

function cd

{

builtin cd "$@" && ls

}

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Customize Your .bashrc

Aliases

#!/bin/bash

Shorthand for commands

alias a='ls'

Really good for shortening commands with flags

alias q='ls -slap'

Or renaming them

alias bat='acpi'

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Customize Your .bashrc

Aliases are also good for adding “default” flags

Always use the -p for mkdir

alias mkdir='mkdir -p'

Always use -l, -h, -a for ls

alias ls='ls -lah'

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Customize Your .bashrc

Custom prompt

PS1 is the "prompt variable"

export PS1="\W >>> "

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Customize Your .bashrc

Some useful escape sequences (all prefixed with ’\’)

d - weekday in “weekay month data” format

e - ASCII escape character (useful for other control
sequences)

h - hostname (H for FQDN)

@ - current time in 12-hour AM/PM format

u - current user

W - current directory (W for full path)

- command number

$ - $ if normal user, # if root

nnn - special character mapped to octal number nnn

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Questions?

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

References

Bash
http://mywiki.wooledge.org/BashFAQ
http://mywiki.wooledge.org/BashGuide
http://mywiki.wooledge.org/BashPitfalls
https://tldp.org/HOWTO/Bash-Prog-Into-HOWTO.html

Linux
http://tldp.org
https://linux.org

LATEX
http://latex.org
https://latex-project.org

Programming
in Bash for

Fun and Profit

Christopher
W. Pitts

Intro

Common
Pitfalls

Features

Useful
Applications
Of Bash

Conclusion

Slides And Code

https://github.com/cwpitts/bash-presentation

	Intro
	Common Pitfalls
	Features
	Useful Applications Of Bash
	Conclusion

